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Course: Numerical Analysis
1.  Applied Numerical Methods for Engineers and Scientists

S. S. Rao, Prentice Hall

2. Numerical Analysis/D. Kincaid and W. Cheney

3. Numerical Analysis/R.L. Burden and J.D. Faires

Lecturer: 黃美嬌 教授 Rm.729 @ 33662696

mjhuang@ntu.edu.tw

Teaching Assistant: 翁健洲 Rm.533 @ 33664498

b96522106@ntu.edu.tw

Office hours:  週三下午2:00~3:30

週四上午 11:00~12:30

Contents:

1. Introduction – rounding errors

2. Root searching

3. Interpolation

4. Matrix equation

5. (Eigenvalues and eigenvectors of square matrices)

6. Numerical differentiation and integration

7. Finite difference methods for IV/BV ODEs

8. Finite difference methods for PDEs

9. Approximation theory

學習目標:

1. 數值方法原理 (設計、誤差分析、穩定性、效率等)

2. 高階程式語言 (Fortran or C) 與程式邏輯設計

3. 報告撰寫

學期評分:

1. 四份報告 80% (15%+20%+20%+25%)

2. 期末考 15%

3. 平常表現 5%

1 Introduction and Review

§ Notation

(a,b)  the set of all real numbers which are > a and < b

[a,b]  the set of all real numbers which are  a and  b

(a,b]  the set of all real numbers which are > a and  b

R = the set of all real numbers

R2 = the set of all points on the real two dimensional space

R3 = the set of all points on the real three dimensional space
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     1. .       but  e g f x x C R C R  

           1 2. .   exp   , , , ,e g f x x C R C R C R C R  

       1 2e.g.  all polynomials , , , ,C R C R C R C R 

         2 1 0C R C R C R C R C R     

C(X) = the set of all functions which are continuous in X.

Cm(X) = the set of all functions which m derivatives exist and are 
continuous in X.

§ Big O

     0   as   f x O g x x x 

if there exists a neighborhood D of x0 and a constant C such that 

     for   f x C g x x D 
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 

§ small o

      
 0

0  as   if  lim 0
x x

f x
f x o g x x x

g x
  

 
1 1. .     as  
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x x x
    
 

   . .   cos 1   as  0e g x o x x  

§ limit
   

0

lim   if given 0,  0 such that 
x x

f x L f x L


       

0whenever  0 x x   

0
. .  lim  does not exist.
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  2

2
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e g x


    

§ Continuity

     0 00
  is said to be continuous at  if lim  = 

x
f x x f x f x


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  2
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5 5

x 
   

   

   
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2 2

2 2

4 20 5 5 4
5 5 55 5

RHS       
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LHS          
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§ Differentiability

     
0

0
0

0

 is said to be differentiable at  if lim exists.
x x

f x f x
f x x

x x





 . .   is differentiable everywhere except at 0e g f x x x 

Differentiability implies continuity.

§ Riemann integral
   

 
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§ Intermediate Value Theorem

       If  ,  and  is any number between  and ,f x C a b K f a f b

   then  ,c a b f c K   

§ Mean Value Theorem

     If  ,  and  is differentiable on , , f x C a b f a b

         then  ,c a b b a f c f b f a     

§ Taylor’s Theorem with Integral Remainder

     1If  , ,  then for any points  and  in , ,nf x C a b x c a b

        
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§ Taylor’s Theorem with Lagrange Remainder

     1If  , ,  then for any points  and  in , ,nf x C a b x c a b

        
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for some  between x and c.

§ Taylor’s Theorem in two variables

      
     

1

2

If  , , , ,  

then for any point ,  in , , ,

nf x y C a b c d

x dx y dy a b c d R
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   
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  
       



     
1

1, ,
1 !
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nE x y dx dy f x dx y dy
n x y


  

         

for some 0 <  < 1

k

dx dy
x y

  
   

     
0

, 1 , ,dx dy f x y f x y f x y
x y

  
      

 
1

, f fdx dy f x y dx dy
x y x y

    
       

   
2 2 2

2 2
2 2, 2 ,dx dy f x y dx dxdy dy f x y

x y x yx y
       

            

2 2 2
2 2

2 22f f fdx dxdy dy
x yx y

  
  

  

§ Machine numbers

~  represented by a finite number of binary digits (bits)

e.g.  a single-precision real number is usually represented by  
a word = 4 bytes = 32 bits 

e.g. 16-base system:   16ba 

X | XXXXXXX | XXX XXX
1 bit         7 bits                   24 bits

sign   exponential part   fractional part
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• exponential part (7 bits):

# of numbers that can be composed = 27 = 128

0000000    0      64

0000001    1      



 64     0

…

1111111    127    63

64  for zero and positive exponents: 0,1,2, 63
64  for negative exponents: 1, 2, , 64

   




e.g. 0 1000010 101100…000

66221000010 61  26466 1616  

6875.0222000...101100 431  

20 1000010 101100...000 0.6875 16 176  (10 base)   

• fractional part: (24 bits)

1
1 2 3 24

1

2maximum   111 111     2 2 2 2 1
1 2


   

      


 

1 2 24
1 2 3 22 23 24 1 2 24X X X X X X      X 2 X 2 X 2         

§ Machine numbers --- 32 bits

~  # of machine numbers = 32 3.2 92 1024 4.3 10 4G   

the maximum one = 0(1111111)(11……1)  1663  1076

the minimum nonzero one = 0(0000000)(00……01)
24 64 842 16 10    

WARMING MESSAGE:

OVERFLOW ~ appears a number which absolute value > 1076

UNDERFLOW ~ appears a nonzero number which absolute 
value < 10

~ a finite set of real numbers

)(  6875.0000...101100 10000000 0 2P

The two nearby machine numbers are:

)( 2 6875.0001...101100 10000000 0 3
24 P

)( 2 6875.011...101011 10000000 0 1
24 P

§ Machine numbers --- discrete number system

real number1P 2P
3P?

~  all represented by P2

2rounding error P P 
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How to present 3.141592653589793…..? Machine-dependent!

e.g. k = 7

1103141592.0)( :method chopping fl

1103141593.0)( :method rounding fl

)( flerror 

§ Rounding Errors

Suppose a machine can represent a number up to k digits in the 

following form: 
1 2 10n

kd d d  1,  1 9  and 0 9, 2,3, ,id d i k     

operations subsequentn after error  rounding of magnitudenE

CCnEEn constant  somefor     :growthlinear   0

Usually unavoidable but acceptable as long as C and E0 are 
sufficiently small.

1constant  somefor     :growth lexponentia  0  CECE n
n

Overflow!

Round-off errors are unavoidable 

and accumulate as computations go on.

§ Rounding Errors

1example:  compute the series   with single-precision real numbers
3n nP 

Method 1
P(0)=1
DO n=1,100

P(n)=1./3.*P(n-1)
END DO

Method 2
P(0)=1
P(1)=1./3.
DO n=2,100

P(n)=10./3.*P(n-1)P(n-2)
END DO

   

     

1

1 2

1Method 1:  *
3

10Method 2: *
3

n n

n n n

fl P fl fl fl P

fl P fl fl fl P fl P



 

       
       

method(1)

method(2)

nP
stable!

unstable!

   

     

1

1 2

1Method 1:  *
3

10Method 2: *
3

n n

n n n

fl P fl fl fl P

fl P fl fl fl P fl P



 

       
       
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Method 2
P(0)=1
P(1)=1./3.
DO n=2,100

P(n)=10./3.*P(n-1)P(n-2)
END DO

n
nP  

1 210
3

n n n    

2 10 1 0
3

    

  13 0
3

      
 

13
3

n
n nP A B   

0

1

1 0
1 13
3 3

P A B A
B BP A

         

1
3n nP 

formula correct!

Disasters due to rounding error
http://www.ma.utexas.edu/users/arbogast/disasters.html

1. The Patriot and the Scud.

On February 25, 1991, during the Gulf War, a Patriot missile 
defense system let a Scud get through. It hit a barrack, killing 28 
people. The problem was in the differencing of floating point 
numbers obtained by converting and scaling an integer timing 
register.  

Disasters due to rounding error
http://www.ma.utexas.edu/users/arbogast/disasters.html

2. The short flight of the Ariane 5.

On June 4, 1996, the first Ariane 5 was launched. All went well 
for 36 seconds. Then the Ariane veered off course and self-
destructed. The problem was in the Inertial Reference System, 
which produced an operation exception trying to convert a 64-bit 
floating-point number to a 12-bit integer. It sent a diagnostic 
word to the On-Board Computer, which interpreted it as flight 
data. Finis.

Ironically, the computation was done by legacy software from the 
Ariane 4, and its results were not needed after lift-off.

Disasters due to rounding error
http://www.ma.utexas.edu/users/arbogast/disasters.html

3. The Vancouver Stock Exchange.

In 1982,  the Vancouver Stock Exchange instituted a new index 
initialized to a value of 1000.000. The index was updated after 
each transaction. Twenty two months later it had fallen to 520. 
The cause was that the updated value was truncated rather than 
rounded. The rounded calculation gave a value of 1098.892.
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Disasters due to rounding error
http://www.ma.utexas.edu/users/arbogast/disasters.html

4. Parliamentary elections in Schleswig-Holstein.

In German parliamentary elections, a party with less than 
5.0% of the vote cannot be seated. The Greens appeared to 
have a cliff-hanging 5.0%, until it was discovered (after the 
results had been announced) that they really had only 4.97%. 
The printout was to two figures, and the actual percentage 
was rounded to 5.0%.

Ways of Avoiding Rounding Errors:
• Reduce # of computations as many as possible.

3.14159 ... 2.71828 ..2 . 5.85987 ..653 182 448.e    

* 3.14159 ...* 2.71828 ... 8.52653 182 422.3973 ..e  

7 digits + rounding method:

( ( ) ( )) (3.14159 2.71828 ) 5.8593 2 587fl fl fl e fl    

( ( ) * ( )) (3.141593 * 2.718282)
                         (8.539735703.. 6.) 8.53973
fl fl fl e fl

fl
 

 

• Avoid substraction of two nearly equal numbers.

311 103020000.0103141291.0103141593.0)()(  yflxfl

~ lose 4 digits of significance

(Any further calculations can have only 3, instead of 7, digits of significance.)

• Avoid dividing by a small number.

original rounding error     )(number exact zflz

610number  small aby  divided 






610)( error  rounding 

zflz
�


