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1 Introduction and Review 2 ﬁy‘

§ Notation
(a,b) = the set of all real numberswhichare>aand< b
[a,b] = the set of all real numberswhichare>aand<b

(a,b] = the set of all real numberswhichare>aand<b

R =the set of al real numbers
R2 = the set of all points on the real two dimensional space
R® = the set of al points on the rea three dimensional space
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C(X) = the set of al functions which are continuousin X.

C™(X) = the set of al functions which m derivatives exist and are
continuousin X.

eg. f(x)=|Y eC(R) but ¢C'(R)
eg. f(x)=exp(x) eC(R),C'(R),C*(R),--,C*(R)

eg. dl polynomias  C(R),C*(R),C*(R),---,C*(R)

C*(R)c--cC?(R)c=C'(R)cC(R)=C°(R)

B

§BigO
f(x)=0(g(x)) as x—x
if there exists a neighborhood D of X, and a constant C such that

| (x)<Clg(x) for xeD

- n+l:O(1

7 — as nNn—ow
n n

eg. sin(x)—[x—xgjzo(xs) as x—0

g = j.ﬁﬁ A AT TN,
§ small o
f(x)=0(g(x)) asx—x, if ang%:O
1 1
eg. X9~ o(;j as x—> oo

eg. cos(x)-1=o0(x) as x—0

o

® S
§ limit
lim f (x)=L if givene >0, 35 >0 suchthat |f (x)-L| <&

X=X

whenever 0<|x—x,|<8
eg. limx* =4 (take 5=¢/(5+¢))

eg. Iimm does not exist.
x>0 X
§ Continuity

f(x) issaidto becontinuousat x, if lim f (x) = (x,)
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eg. limx*=4 (take 3=¢/(5+¢)) 7 7

for |x-2/<8=¢/(5+¢):

4 g2

et <K h————
S+e (5+g) S+e (5+g)

2 2
RHS 4g Lt :208+58 B 5

_ e ) 4+¢ <e
5+¢ (5+g)2 (5+g)2 (5+¢) (5+¢)

2 2 2
LHS:7i+ e 20e+3"  20e+5¢"

5 _4+8

5vc (5+cf  (5+ef | (5+ef  (5+¢) (5+¢)

—e<X-4<g > ‘X2—4<8
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§ Differentiability

F(x)-f
£ (x) issaid to be differentiable at x, if im0~ ()
X%

eg. f(x)=|x isdifferentiable everywhere except at x=0

Differentiability implies continuity.

§ Riemann integral .
J': f(x)dx=1im3" f(z)ax

wherea<x, <x <---<x <b

A% =% =%, 7 €[%4,%]

exists.
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§ Intermediate Value Theorem —_—

If f(x)eC[a,b] andK isany number betweenf (a) and f (b),
then 3ce(a,b)> f(c)=K
§ Mean Value Theorem

If f(x)eCl[a,b] andf isdifferentiable on (a,b),
then 3ce(ab)>(b-a)f'(c)= f(b)-f(a)

£(x) 1x)
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§ Taylor’s Theorem with Integral Remainder

If f(x)eC"*[a,b], thenforany pointsx and c in [a,b],

> 100 +R (49




§ Taylor’s Theorem with Lagrange Remainder

If f(x)eC"*[a,b], thenforany pointsx and c in [a,b],

for some & between x and c.

§ Taylor’s Theorem in two variables

If f(xy)eC™([ab]x[c,d]),

then for any point (x+dx, y+dy) in [a,b]x[c,d] < R?,

f (x+dx, y+dy) :Zn:i

k
0 0
kjokl[dX&ery@) f(xy) + E/(xvy)

n+l
0 0
= dx—+dy— | f 0dx, y + 6d
(n+1)!( ot yayj (x+6dx, y+6dy)

forsome0<0<1

o oY of
(dx&+dyaj f(xy) dx—+dy@
dx£+dyE i f(xy)=|d —+2dxdy——+dy
ox oy ox oy oy?

26 f za f
+2dxdy—+dy
oxoy

=dx

& o

§ Machine numbers
~ represented by afinite number of binary digits (bits)

e.g. asingle-precision real number is usually represented by
aword = 4 bytes = 32 bits

X XXXXXXX [ XXX XXX

1 bit 7 bits 24 bits
sign exponential part fractional part
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« exponential part (7 bits):
# of numbers that can be composed = 27 = 128

64 for zero and positive exponents:. 0,1,2,---63
64 for negative exponents. —1,-2,---,—64

0000000 = 0 = -64
0000001 = 1 > -63

1000000 = 64 = 0

1111111 = 127 = 63

e e e R L AW

« fractional part: (24 bits)
XXX XXXy = X274 X, 2% 4t X, - 27

2*1
127

maximum 111.--111 = 2'+2%42°%4+...42% 1

e.g. 01000010 101100...000

1000010=2"+2° =66 = 16%% =162

101100...000=2"+22+2* =0.6875

01000010 101100...000 = +0.6875x 16> = 176 (10base)

e et e = B
L P RS,

§ Machine numbers --- 32 bits

~ #of machine numbers= 2% =1024°2 ~ 4.3x10° ~ 4G

the maximum one = 0(1111111)(11...... 1) ~ 1653~ 107

the minimum nonzero one = 0(0000000)(00...... 01)
=2%x16%~10%

WARMING MESSAGE:
OVERFLOW ~ appears a number which absolute value > 1076

UNDERFLOW ~ appears a nonzero number which absolute
value< 10-%

~afinite set of real numbers

.y A AT TN
§ Machine numbers --- discrete number system

010000000 101100...000 = 0.6875 (P,)

The two nearby machine numbers are:

010000000 101100...001 = 0.6875 +27* (P,)

010000000 101011 ...11=0.6875 - 27 (R,)

fine}

R real number

~ al represented by P,

rounding error =|P-B)|
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§ Rounding Errors

Suppose a machine can represent a number up to k digitsin the

following form: +dd,---d, x10" , 1<d, <9 and0<d <9,i=2,3,--,k

How to present n=3.141592653589793.....? Machine-dependent!

eg. k=7
chopping method : fl () = 0.3141592 x10*

rounding method : fl(7) = 0.3141593 x 10"

error = |z — fl(7)|

=

§ Rounding Errors

Round-off errorsare unavoidable

and accumulate as computations go on.
E, = magnitude of rounding error after n subsequent operations
* linear growth : E = CnE, for some constant C

Usually unavoidable but acceptable aslong as C and E, are
sufficiently small.

* exponentia | growth : E, ~ C"E, for some constant C >1

Overflow!

example: compute the series P, :3—1n with single-precision real numbers
Method 1 Method 2
P(0)=1 P(0)=1
DO n=1,100 P(1)=1./3.
P(n)=1./3* P(n-1) DO n=2,100
END DO P(n)=10./3.* P(n-1)-P(n-2)
END DO

Method 1 fi (P,)= fl(fl [%] ﬂ(Pn,l)j
Method 2: i (P,) = fl[fl(ls?j* f(P,)- ﬂ(Pn,z)J

ook unstable!

stable!
*s.,, Method(1)

Method 1: fi(P,) = ﬂ[fl (é) fI(PM)J
Method 2: fl (P,) = ﬂ[ﬂ[lsoJ* fl(P,,)- ﬂ(Pn,z))
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Method 2

P(0)=1 e
P(1)=1./3. n_10 o0 o
DO n=2,100 PP P
P(n)=10./3.* P(n-1)-P(n-2) , 10
END DO progprt=0
1
—3) p-=1|=0
b1 (p )(" 3]
n 3n
formula correct! P=A3+ B’sil”
P, =1=A+B A0
P= 1 3A+ B B=1
3 3

qqqqq

Disastersduetorounding error

1. The Patriot and the Scud.

On February 25, 1991, during the Gulf War, a Patriot missile
defense system let a Scud get through. It hit a barrack, killing 28
people. The problem was in the differencing of floating point
numbers obtained by converting and scaling an integer timing
register.

qqqqq

Disastersduetorounding error

2. The short flight of the Ariane 5.

On June 4, 1996, the first Ariane 5 was launched. All went well
for 36 seconds. Then the Ariane veered off course and self-
destructed. The problem was in the Inertial Reference System,
which produced an operation exception trying to convert a 64-bit
floating-point number to a 12-bit integer. It sent a diagnostic
word to the On-Board Computer, which interpreted it as flight
data. Finis.

Ironically, the computation was done by legacy software from the
Ariane 4, and its results were not needed after lift-off.

qqqqq

Disasters dueto rounding error

3. The Vancouver Stock Exchange.

In 1982, the Vancouver Stock Exchange instituted a new index
initialized to a value of 1000.000. The index was updated after
each transaction. Twenty two months later it had fallen to 520.
The cause was that the updated value was truncated rather than
rounded. The rounded cal culation gave a value of 1098.892.
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Disastersduetorounding error

4. Parliamentary electionsin Schleswig-Holstein.

In German parliamentary elections, a party with less than
5.0% of the vote cannot be seated. The Greens appeared to
have a cliff-hanging 5.0%, until it was discovered (after the

results had been announced) that they really had only 4.97%.

The printout was to two figures, and the actual percentage
was rounded to 5.0%.

Ways of Avoiding Rounding Errors:

* Reduce # of computations as many as possible.
n+ e=3.141592653... + 2.71828182... = 5.85987448...
n* e=3.141592653...* 2.71828182... = 8.53973422...

7 digits + rounding method:
fl(fl(n) + fl(e)) = f1(3.141593 + 2.718282) = 5.859875

fl(fl(n)* fl(e)) = f1(3.141593* 2.718282)
|(8.539735703...) = 8.539736

« Avoid substraction of two nearly equal numbers.
fl (x) — fl (y) = 0.3141593 x 10" — 0.3141291 x 10" = 0.3020000 x 102
~ lose 4 digits of significance
(Any further calculations can have only 3, instead of 7, digits of significance.)
* Avoid dividing by a small number.
original rounding error = & exact number =z= fl(z)+6

divided by asmall number & =10"°

2 @

rounding error =

- ‘é‘ ~10°s]
& &




